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Abstract. We have given a detailed investigation of the energy spectrum and the electrical
properties of a two-dimensional electron gas modulated by a general form of one-dimensional
periodic magnetic field along thex direction, by generalizing the theory of Peeters and
Vasilopoulos and that of Xue and Xiao on the magnetic modulation in the lowest order of
approximation of Fourier transformation. The presence of the magnetic modulation lifts the
degeneracy of the Landau levels, which are broadened into bands, and leads to Weiss-like
oscillations in the magnetoresistance. The oscillations inρxx (and the modulation correction
1ρxx ) and ρyy (and 1ρyy ) are out of phase, while1ρxy oscillates in phase with1ρxx .
The amplitude of oscillation of the modulation correction1ρxx is much larger than those of
1ρyy and 1ρxy . We also find the surprising result that, while the Hall resistance displays
quantized plateaux, the transport across the magnetic barriers can be nearly dissipationless. The
contribution of high-frequency components of Fourier transformation is obvious at high fields
and is negligible at low fields.

1. Introduction

Since the discovery of the oscillations in magnetoresistance of the high-mobility two-
dimensional electron gas (2DEG) modulated by a one-dimensional (1D) weak periodic
potential, discovered due to Weisset al [1], the study of these novel oscillations (also
called Weiss oscillations) by different theoretical models and experimental methods [2–14]
has attracted much interest from physicists and experimentalists. In a perpendicular magnetic
field and a weak 1D potential modulation, Weiss oscillations in the magnetoresistance tensor
ρµν are periodic in 1/B in the same way as the Shubnikov–de Haas (SdH) oscillations,
but with a larger period depending on both the modulation perioda and the square
root

√
ne of the areal electron density of 2DEG, in contrast with the linear dependence

(on ne) of SdH oscillations. The amplitude of these novel oscillations has a weak
dependence on the temperature in contrast with the sensitive temperature dependence in SdH
oscillations. Physically, Weiss oscillations inρµν can be interpreted as a consequence of the
commensurability between the length scales of the modulation perioda and the cyclotron
electron radiusRN = √

2N + 1l at the Fermi energy, wherel = √
h̄/eB and N = nF is

the Landau level index [2–14], whereas SdH oscillations come from the resonance between
l and the Fermi wavelengthλF of the 2DEG [9].

A similar system of great interest is the 2DEG modulated by magnetic field, which
has also been discussed by several workers [15–17]. By depositing a series of stripes
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of magnetic material on top of a high-mobility AlxGa1−xAs–GaAs heterojunction, using
modern lithography techniques, we get a 2DEG modulated by the 1D periodic magnetic field.
In the lowest-order approximation of Fourier transformation,B = [B0 +B1 cos(Kx)]êx , the
results of [15–17] state that magnetoresistance also has two kinds of oscillation: the novel
oscillation related to the modulation and the SdH oscillations similar to those of a 2DEG
under potential modulation. The aim of this paper is to give a detailed calculation of the
magnetoconductivity tensor components for a more general form of the magnetic modulation
field, including the higher order of Fourier components of modulation, to the second order
of modulation strength.

We organize the paper as follows. In sections 2 and 3, we calculate the one-particle
energy spectrum and the density of states (DOS) in the regime of the first-order quantum
perturbation theory, which is the starting point of the following sections. The electrical
conductivity tensors are calculated in section 4. In section 5, we give the numerical results
on the conductivity and resistivity tensors and a detailed discussion of the results. Finally,
our conclusion and some remarks are given in section 6.

2. Energy spectrum

We consider a 2DEG lying in the(x, y) plane with a lateral weak periodic modulated
magnetic field (the modulation being taken along thex direction) B = (B0 + B1(x))êx ,
where the oscillating part|B1| � B0. Using the Landau gauge for the vector potential, we
take

A = A0 + A1 = (0, A0(x) + A1(x), 0) (1)

with A0(x) = B0x and

A1(x) =
∑

g

A1(g) exp(igx) (2)

whereg = pK = p2π/a, p = ±1, ±2, . . ., anda is the spatial modulation period. With
the assumption thatA1(x) is a real function, we haveA∗

1(g) = A1(−g), and equation (2)
may be rewritten as follows:

A1(x) =
∞∑

p=1

2 Re[A1(gp) exp(igpx)]. (3)

Without losing generality, to match the above representation with the lowest Fourier term
approximationA1(x) = (B1/K) sin(Kx), we may take the following form ofA1(g):

A1(gp) = B1

2if (gp)
(4)

with f (gp) having the dimension ofg1(= K), andf (K) = K.
The one-particle Hamiltonian of the system is

H = 1

2m∗ [p + eA]2 + VI

= 1

2m∗ [p + eA0]2 + 1

m∗ (py + eB0x)eA1(x) + 1

2m∗ (eA1(x))2 + VI

= H0 + H 1 + VI (5)
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wherem∗ andp are the effective mass and momentum operator, respectively, of the electron
and

H0 = 1

2m∗ [p + eA0]2 (6)

H 1 = 1

m∗ (py + eB0x)eA1(x) + 1

2m∗ (eA1(x))2 (7)

andVI (r) = ∑
j u(r − Ri ) is the effective two-dimensional (2D) scattering potential of the

randomly distributed impurities (located atRj ) in the plane of the 2DEG.
In the absence of modulation and impurities, the normalized eigenfunctions ofH0 in

equation (6) are given by

ψ0
nky

= 1√
Ly

exp(iyky)8n(x + x0) (8)

corresponding to the eigenvaluesE0
n = (n + 1

2)h̄ωc (with the cyclotron frequencyωc =
eB0/m∗), degenerate with respect to the wavevectorky (in they direction), where8n(x+x0)

are the normalized wavefunctions of the 1D harmonic oscillator centred atx0 = l2ky , with
the minimum cyclotron radiusl = (h̄/eB0)

1/2, and Ly the width of the 2DEG in they
direction.

In the perturbation theory of quantum mechanics, the first-order wavefunctions and the
corresponding eigenvalues are

|nky〉1 = |nky〉0 +
∑
m6=n

H 1
n,m

E0
n − E0

m

|mky〉0 (9)

and

Enky
= (n + 1

2)h̄ωc +
∞∑

p=1

εn,p cos(pKx0). (10)

In order to obtain the explicit expressions ofH 1
n,m andεn,p, we use the formula given

in [10] for an arbitrary 2D Fourier component:

0〈n′k′
y | exp(iq · r)|nky〉0 = δk′

y ,ky+qy
exp

[
− i

2
l2qx(k

′
y + ky)

] (
m!

M!

)1/2

i|n
′−n|

×
(

(qx + iqy)

q

)n−n′

e−Q/2Q|n′−n|/2L(|n′−n|)(Q) (11)

whereQ = 1
2l2q2, andq =

√
q2

x + q2
y ; Ln(Q) is the associated Laguerre polynomial;m and

M are the minimum and maximum respectively, ofn andn′. Neglecting the higher-order
perturbation term inH 1, we have the matrix elements

H 1
n,n′ = 0〈nky |H 1|n′ky〉0

= 1
2h̄ω1

∞∑
p=1

pK

f (pK)

{
[1 − |n − n′|u−1p−2]L(|n−n′|)

m (p2u) − 2

p2

∂

∂u
L(|n−n′|)

m (p2u)

}
×

(
m!

M!

)1/2

exp

(
−p2u

2

)
(p2u)|n−n′|/2{Re(i|n−n′| exp(ipKx0))} (12)

and

εn,p = 1
2h̄ω1

pK

f (pK)
exp

(
−p2u

2

)
[L1

n(p
2u) + L1

n−1(p
2u)] (13)
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whereω1 = eB1/m∗ andu = 1
2K2l2. H 1

n,m andεn,p are the first-order perturbation quantities
and thep = 1 terms in equations (12) and (13) coincide with the former results of Peeters
and Vasilopoulos [17] in the lowest order of Fourier transformation. From equation (10) we
know that the eigenvalues depend on the wavevectorky and the magnetic modulation has
lifted the degeneracy of Landau levels with different wavevectorsky . The Landau levels
broaden into bands, whose width oscillate with the fieldB0, the modulation perioda and the
Landau level indexn. Owing to the symmetry of the problem, the wavevectorky remains
a good quantum number, as in the unmodulated case.

In the absence of modulation,ψ0
n,ky

are localized states in the(x, y) plane, i.e.
0〈nky |vx |nky〉0 = 0 and 0〈nky |vy |nky〉0 = 0 for all eigenstates while, in the modulated
system, theky degeneracy of Landau levels has been lifted. To the order of ¯hω1, we have

1〈nky |vx |nky〉1 = 0 (14)

1〈nky |vy |nky〉1 = − 2u

h̄K

∞∑
p=1

pεn,p sin

[
2pu

K
ky

]
. (15)

The p = 1 term of equation (15) corresponds to equation (6) of [17].
The first-order wavefunctions|nky〉1, different from |n, ky〉0, are localized in thex

direction while extended in they direction, which would lead to important consequences
for electrical transport properties, as discussed in section 4.

3. Density of states

A 2DEG system has a different energy spectrum with magnetic modulation from that
without; this may also be reflected in the DOSs. In the unmodulated case,B1(x) = 0,
the DOS of the system isD(E) = ∑

nky
δ(E − E0

n) = (1/2πl2)
∑

n δ(E − E0
n), which is

expressed for the unit surface of the 2DEG. In this case, the DOS is a series of sharp lines,
corresponding to different energy levelsE0

n = (n + 1
2)h̄ωc. For each Landau level, there

are 1/2πl2 states, independent of the indexn. In the modulated case, the DOSs take the
following form:

D(E) =
∑
nky

δ(E − En,ky
)

= 1

2πa

∞∑
n=0

∫ a/l2

0
dkyδ(E − En,ky

). (16)

The DOS is broadened into bands with different band widths corresponding to different
Landau levels. The number of available states in each Landau level is still 1/2πl2. The
averaging magnitude of the DOS of a specific Landau level will be inversely proportional
to the band width. So narrow bands lead to a large peak value of the DOS. As a result,
the quantities proportional to the magnitude of the DOS are 180◦ out of phase with the
quantities proportional to the band width of the Landau level.

In summary, the DOS has mainly two kinds of oscillating property. The first comes
from the oscillations of the band width, as discussed in section 2. This kind of oscillation
exists only in the modulated 2DEG and corresponds to the Weiss oscillations. The second
is the usual oscillation of the DOS at the Fermi energy. As the magnetic field increases,
the lower Landau levels sweep through the Fermi energyEF , subsequently resulting in
the oscillation of the DOS atEF . This corresponds to the SdH oscillation. Therefore the
oscillating properties of the DOS will have profound effects on the transport quantities of
the 2DEG in the case of modulation.
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In the practical system, there always exists randomly distributed impurities as introduced
in equation (5). For simplicity, let us assume thatVI (r) varies rapidly within the length
scale of the cyclotron radiusl, i.e.

VI (r) = V0

∑
i

δ(r − Ri ) (17)

whereV0 is the strength of the scattering impurities. Starting from the elastic transition rate
formula

Wnky,n′k′
y
= 2π

h̄
|〈nky |VI |n′k′

y〉|2δ(En,ky
− En′,k′

y
) (18)

we get the impurity broadening of the Landau levels,0n = 0 = (V 2
0 ni/πl2)1/2, which

is independent of the Landau level number.ni is the areal density of impurities. In
this case, we may assume a Lorentzian broadening of theδ-function in equation (16), i.e.
δ(E) = (0/π)/(E2 + 02), and get

D(E) = 1

2πa

∞∑
n=0

∫ a/l2

0
dky

0/π

(E − En,ky
)2 + 02

. (19)

Equation (19) contains both the effects of scattering impurities and the modulation
broadening of Landau levels. For a non-interacting 2DEG with areal densityne, the DOS
satisfies the relationne = 2

∫ ∞
0 dEf (E)D(E), wheref (E) is the Fermi–Dirac distribution,

and 2 is the spin degeneracy factor. With the relation, the Fermi energyEF of the 2DEG
may be determined for a definite magnetic field and it will be an oscillatory quantity with
respect to the magnetic field as in the case of potential modulation [9].

The numerical solution of the DOSs are shown in figure 1 for three different values of
impurity Landau level broadening:0 = 0.01, 0.1 and 0.2 meV atB0 = 0.6 T. Note
that the DOSs in figure 1 are plotted in units of their values at zero magnetic field,
D0 = m∗/πh̄2. The solid lines in figure 1 represent the DOSs at lowest order of Fourier
transformation, i.e.Rp=1 = pK/f (pK) = 1.0 andRp≥2 = 0.0. The broken curves represent
the cases ofRp=1,2 = 1.0 and Rp≥3 = 0.0, corresponding to the magnetic modulation
B1(x) = B1(cos[(2π/a)x] + 1

2 cos[(4π/a)x]).
We can see from figure 1 that for a sufficiently small impurity broadening parameter

(small 0) the DOSs have 1D van Hove singularities at the low- and high-energy edges of
each modulation-broadened Landau band, corresponding to a band width larger than the
value of0. The DOS peaks of different Landau bands are well separated from each other
(see figure 1(a)). The wide band corresponds to the lower DOS peaks, and the narrow band
to the higher peaks, which is a consequence of the fact that each Landau level contains the
same number of states.

For the larger value of0, as shown in figure 1(b), the DOSs of different Landau levels
start to overlap. The peak heights become small, and the van Hove singularities disappear
for some Landau levels. If the impurity broadening is so large that different levels become
heavily overlapping, the van Hove singularities disappear completely (see figure 1(c)). So
the impurities have very important effects on the properties of DOSs, and therefore on the
transport properties of the 2DEG. In the numerical analysis in section 5 we take a relatively
small 0 so as to obtain more information on the 2DEG modulated by the magnetic field.

From figure 1 we also noted that the high-frequency components of modulation influence
the properties of van Hove singularities of different Landau levels, while they do not change
the corresponding band width. Therefore, they will influence the transport properties of the
2DEG, as discussed in section 5.
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Figure 1. DOSs in units of their values at zero magnetic field,D0 = m∗/πh̄2, at B0 = 0.6 T
andB1 = 0.06 T for (a) 0 = 0.01 meV, (b) 0 = 0.1 meV and0 = 0.16 meV.
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4. Conductivity tensor

We now consider the conductivity tensor for a 2DEG modulated by a general form
of modulation magnetic field. We use the linear response theory [18] due to the
weak modulation field to calculate the electrical transport coefficients, as given in [18],
derived from the general Liouville equation. For the static modulation and in the one-
particle approximation the diagonal components of conductivity tensor consist of the band
conduction contribution

σb
µµ(0) = βe2

A

∑
ξ

fξ (1 − fξ )τ (Eξ )|〈ξ |vµ|ξ〉|2 (20)

and the scattering contribution to conduction given by

σ s
µµ(0) = βe2

2A

∑
ξξ ′

fξ (1 − fξ ′)Wξξ ′(αξ
µ − αξ ′

µ )2 (21)

whereβ = 1/kBT , A is the area of the sample,fξ is the energy distribution function of
electron at stateξ , τ(Eξ ) is the relaxation time corresponding to the electron state|ξ〉, Wξξ ′

is the transition rate from|ξ ′〉 to |ξ〉 as that in equation (18), andαξ
µ = 〈ξ |rµ|ξ〉, whererµ

is theµth component of the electron position operator.
The band conduction (also called diffusion conduction) contribution depends on the

group velocities of electrons and is absent in a homogeneous 2DEG. It increases with
increasing band width and decreases with increasing impurity scattering, while the scattering
conduction (also called collisional conduction) describes the transport through localized
states, corresponding to the quantum hopping of the cyclotron motion of electrons and
increases with increasing impurity scattering [9, 19].

The static non-diagonal conductionσn
µν(0) is [18]

σµν(0) = ih̄e2

A

∑
ξ 6=ξ ′

(fξ − fξ ′)
〈ξ |vµ|ξ ′〉〈ξ ′|vν |ξ〉

(Eξ − Eξ ′)2
. (22)

In the energy spectrum as discussed above, the spin splittings have not been considered
in order to simplify the calculation. Then the spin degeneracy factor (equal to 2) must be
included when we use equations (20)–(22) to calculate the conductivity tensor. We assume
that electrons in the 2DEG are elastically scattered by the randomly distributed impurities
at low temperatures (T < 10 K), i.e. for the scattering states|ξ ′〉 6= |ξ〉, fξ ′ = fξ . As a
further simplification, we also assume that the transport relaxation timeτ ' µm∗/e (µ is the
mobility of an electron at zero magnetic field), independent of the energy of the electrons,
which is a reasonable approximation for low magnetic fields (B0 < 1.0 T).

We now calculate the band contribution of the conductivity tensor. Starting from
equations (20), (14) and (15), we have

σb
xx = 0 (23)

σb
yy = 2πe2τ l2

h̄2a2
Ê

∞∑
n=0

(
− ∂f

∂E

) ∣∣∣∣
E=E0

n

[ ∞∑
p=1

p2ε2
n,p

]
(24)

to the order of(h̄ω1)
2. The p = 1 term in equation (24) corresponds to equation (10) of

[16].
To evaluate the scattering contribution of conductivity, we firstly calculate and give the

relevant matrix elements

1〈nky |x|n, ky〉1 = l2ky + H 1
n,n−1

h̄ωc

√
2nl2 + H 1

n,n+1

(−h̄ωc)

√
2(n + 1)l2 (25)
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and

1〈n′k′
y | exp(iq · r)|nky〉1= 0〈n′k′

y | exp(iq · r)|nky〉0+
∑
n′ 6=m

H 1
n′,m

E0
n′ − E0

m

0〈mk′
y | exp(iq · r)|nky〉0

+
∑
n6=m

H 1
n,m

E0
n − E0

m

0〈n′k′
y | exp(iq · r)|mky〉0 (26)

to the order of ¯hω1, where0〈n′k′
y | exp(iq · r)|nky〉0 is given by equation (11).

Considering the dominant termsm = n′ ± 1 andm = n ± 1 in equation (26), we get
the scattering contribution from equations (18) and (21):

σ s
xx = e2

h

niV
2

0

π0a

∞∑
n=0

[(2n + 1)An + Bn] (27)

to the order of(h̄ω1)
2, where

An =
∫ a/l2

0
dky

[
− ∂f

∂E

] ∣∣∣∣
E=En,ky

(28)

and

Bn = 1

2

(
ω1

ωc

)2 ∞∑
p=1

(p2u) exp(−p2u)

[
pK

f (pK)

]2

×{D2
n−1,p(u) + D2

n,p(u) + Dn−1,p(u)Dn,p(u)}En,p (29)

with

Dn,p(u) = [1 − (p2u)−1]L1
n(p

2u) + 2L2
n−1(p

2u) (30)

and

En,p =
∫ a/l2

0
dky sin2(pKx0)

[
− ∂f

∂E

] ∣∣∣∣
E=En,ky

. (31)

Equation (27) is formally the same as equation (13) of [17] and contains a higher order
of Fourier components to the second-order perturbation contribution of modulation, absent
in [17], which is more important to the oscillating properties of magnetoconductance as
discussed in section 5.

In the above calculation, we have taken the approximation that the scattering broadening
of Landau level0n = 0, as that below equation (18). In the absence of magnetic
modulation and low-temperature limit, i.e.B1(x) = 0, andT → 0, equation (27) gives
σ = (e2/h̄π2)(nF + 1

2), which depends only on the Landau level indexnF and the
natural constants and is independent of the magnetic field and the scattering strength. This
corresponds to the peaks of ordinary SdH oscillations of 2DEG in a uniform magnetic field
[19].

Using the zeroth-order velocity matrix elements [7]
√

2

lωc

0

〈
n, ky

∣∣∣∣ −ivx

vy

∣∣∣∣ n′, ky

〉0

= √
n + 1δn′,n+1 ∓ √

nδn′,n−1 (32)

the Hall conductivityσyx(= −σxy) can be evaluated with equation (22). The result is

σyx = 2e2

h

l2

a

∞∑
n=0

(n + 1)

∫ a/l2

0
dky

fn,ky
− fn+1,ky(

1 +
∞∑

p=1
λn,p cos(pKx0)

)2 (33)
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whereλn,p = [εn+1,p − εn,p]/h̄ωc with εn,p given by equation (13); thep = 1 term is the
same as equation (16) of [17]. The first-order term, linear in ¯hω1, is absent in the numerator
of the integrand, different from that of [16]. In the absence of modulation(λn,p = 0) and
low-temperature limit(T → 0), we have the Hall conductivityσyx = Ne2/h, whereN

is positive integers. This corresponds to the plateau value of the quantized Hall effect of
2DEG in a uniform magnetic field [19], where the transport across the magnetic superlattice
is without dissipation, as discussed in the next section.

5. Numerical results and discussion

The numerical analysis can proceed for the components of the conductivity tensor from
equations (23), (24), (27) and (33). We take as an example the high-mobility AlxGa1−xAs–
GaAs heterojunction(m∗ = 0.067m), with the areal carrier densityne = 3.16×1015 m−2, the
electron mobilityµe = 1.3×1010 m2 s−1, the impurity concentrationni = 1×1012 m−2 and
a small impurity broadening0 = 0.0129

√
B0 meV. For the 1D magnetic modulation with

a = 3000Å and B1 = 0.06 T in the lowest-order approximation of Fourier transformation,
i.e. B1(x) = B1 cos[(2π/a)x], corresponding toRp≥2 = pK/f (pK) = 0, the numerical
results are shown in figure 2(a) for two temperaturesT = 1 K and T = 6 K. Note that
in the componentσxx contains only the scattering contribution, whileσyy contains both
the scattering contribution(σ s

yy = σ s
xx) and the band conduction(σ b

yy). The modulation
correction to the conductivity,1σµν = σµν(B1) − σµν(B1 = 0), is also evaluated as shown
in figure 2(b) for Rp = pK/f (pK) = 0(p ≥ 2). In the case ofR2 = 1.0 andRp≥3 = 0,
i.e. B1(x) = B1{cos[(2π/a)x] + 1

2 cos[(4π/a)x]}, 1σµν is shown in figure 2(c) for the
temperatureT = 6 K. Note that, in figures 2(b) and 2(c), 1σµν are plotted offset and the
zero points are indicated by the corresponding horizontal arrows.σyx has been rescaled so
as to plot the different components of conductivity tensor in the same figure.

Figure 2 shows that the 1D magnetic modulation gives the following features of
conductivity tensors.

(1) At low temperatures, there are two kinds of oscillation: the new oscillations (Weiss
oscillations) and the SdH-type oscillations. The Weiss oscillations stem from the oscillatory
band width of the modulation-broadened Landau level at the Fermi energyEF , while
the SdH oscillations stem from the oscillatory DOS atEF . The periodTWOS of Weiss
oscillations is much larger than the periodTSdH of the corresponding SdH oscillations, i.e.
TWOS � TSdH. Therefore, atB0 ≤ 0.2 T, only the Weiss oscillations appear since the SdH
oscillations are too weak to be resolved while, atB0 > 0.2 T, the SdH oscillations appear
and overlap the slowly oscillatory envelopes (Weiss oscillations) forT = 1 K.

(2) 1σyy is positive, while1σxx and1σyx oscillate around the zero point.
(3) |1σyy | � |1σxx |. This is because the band contribution inσyy is much greater than

that of the scattering contribution, which is the unique part thatσxx contains.
(4) The Weiss oscillations inσyy (and1σyy) andσxx (and1σxx) are out of phase since

εn,1 and the corresponding DOSs are out of phase, while1σyx and1σxx oscillate in phase.
(5) At B0 > 0.2 T, the SdH oscillations are in phase inσxx andσyy and out of phase

in 1σxx and 1σyy , while the oscillation in1σyx is shifted by 90◦ with respect to that in
1σxx .

(6) At larger fields,B0 > 0.6 T, we haveσyy � σxx . This reflects the fact that the
scattering contribution decreases with the increasing magnetic field.

(7) At higher temperaturesT = 6 K, the SdH oscillations are damped out, only Weiss
oscillations exist. Weiss oscillations have a weaker dependence on the temperature in
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Figure 2. (a) The calculated conductivity tensorσµν versus the uniform magnetic fieldB0.
(b) The modulation correction to the conductivity tensor1σµν . (c) 1σµν for the modulation
B1(x) = B1{cos[(2π/a)x] + 1

2 cos[(4π/a)x]} at T = 6 K. The dotted lines in (a) and (b)
represent the zero points of1σyy . The short vertical arrows represent the Hall plateaux and the
corresponding minima ofσyy .
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contrast with the sensitive dependence of SdH oscillations.
(8) For the modulation with high-frequency components, as shown in figure 2(c), the

Weiss oscillations manifest themselves non-monoperiodically atB0 > 0.35 T, while they
remain monoperiodic atB0 < 0.35 T. This indicates that the contribution of high-frequency
components in modulation (p ≥ 2 as in equation (3)) is much weaker than that of the base
frequency in modulation(p = 1). The theoretical interpretation is thatεn,p contains the
exponential factor exp(−p2u). For high-frequency components,p ≥ 2, the ratio of the
corresponding contribution to that of the low-frequency component is exp[−(p2 − 1)u],
which is much smaller than unity at low magnetic fields whereu(= 1

2K2l2 ∝ 1/B) is
large. Therefore, at low fields,σµν oscillates with a unique period (in 1/B) while, at high
fields, the ratio increases with increasing field and is comparable with the unity. Thenσµν

oscillates with multiple-period components.

The resistivity tensorρµν can be evaluated in terms of the conductivity tensorσµν . From
ρσ = 1, we haveρxx = σyy/S, ρyy = σxx/S, and the Hall resistivityρxy = σyx/S, where
S = σxxσyy +σ 2

yx . In the numerical evaluation, we have taken the following approximation.
From figure 2, we know that firstlyσyx � σxx andσyy and secondly|1σyx | � σyx . Then
we may useS ≈ σ 2

yx ≈ nee/B0 to calculateρxx and ρyy while for the Hall resistivity we
haveρxy = 1/σyx . The numerical results of the resistivity tensor and the contribution due
to modulation(1ρµν = ρµν(B1) − ρµν(B1 = 0)) are shown in figures 3(a) and 3(b) for
T = 1 K and T = 6 K at the lowest order of approximation of Fourier transformation
(Rp = 0, for p ≥ 2). Note thatρxx and1ρxx have been rescaled so as to plot the different
components of the resistivity tensor in the same figure. From figures 3(a) and 3(b), we
obtain the following.

(1) At B0 < 0.2 T, there are only Weiss oscillations inρµν while, at B0 > 0.2 T,
SdH oscillations appear and overlap Weiss oscillations forT = 1 K, where the conditions
h̄ωc � kBT andh̄ωc � 0 are satisfied.

(2) Weiss oscillations inρxx (and 1ρxx) and ρyy (and 1ρyy) are 180◦ out of phase,
since the resistivityρyy is determined by the values of the DOS at the Fermi energyEF ,
while ρxx is mainly determined by the width of the Landau level atEF . In contrast,1ρyx

oscillates in phase with1ρxx .
(3) The SdH oscillations are in phase inρxx and ρyy and out of phase in1ρxx and

1ρyy . In 1ρyx the SdH oscillations are shifted by 90◦ with respect to that in1ρyy .
(4) |1ρxx | � |1ρyy |, |1ρxy |.
(5) The modulation gives an overall non-negative contribution (but with a series minima

of nearly zero values, as discussed below) toρxx , i.e. 1ρxx ≥ 0 for B0 = 0.1–1.0 T.

We note thatρyy has obvious Weiss oscillations, in contrast with the result of [16],
where ρyy has no Weiss oscillations at low fields. This is because we have considered
the second order of perturbation of modulation inσxx (in equation (27)), which is more
important to the oscillating properties ofρyy .

The contribution to the resistivityρxx of high-frequency Fourier components of 1D
modulation is shown in figure 3(c) for temperaturesT = 1, 2, 4 and 6 K. Note that, at
B0 > 0.2 T, the Weiss oscillations have multiple-frequency components. Figure 3(c) also
shows the much weaker dependence of Weiss oscillations on temperature, compared with
SdH oscillations. At high temperatures (T ≥ 6 K), the SdH oscillations are smeared out.

Figures 2(a) and 3(a) also show the surprising result that the Hall conductivityσyx

(resistivity ρxy) displays quantized plateaux wheneverσyy(ρxx) has pronounced minima as
in the case of potential modulation [14], which are close to zero (indicated by the short
vertical arrows). We know that a modulated magnetic field created by strips of ferromagnetic
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Figure 3. (a) The calculated resistivity tensorρµν versus the uniform magnetic fieldB0.
(b) The modulation correction to the resistivity tensor1ρµν . (c) 1ρxx for the modulation
B1(x) = B1{cos[(2π/a)x] + 1

2 cos[(4π/a)x]} at four different temperatures. The lines in (a)
and (b) represent the zero points ofρxx and 1ρxx , respectively. The short vertical arrows
represent the Hall plateaux and the corresponding minima ofρxx .
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or superconducting material can be presented as an effective series of potential barriers [20].
It is also well known that the resistance measured across a wide barrier is finite. Why is
the electric transport across the superlattice structure nearly dissipationless? This can be
explained in terms of the B̈uttiker edge channel picture, as discussed in [14] for potential
modulation. In the edge channel picture the finite resistance is due to the back scattering
of electrons from one side of the sample to the other [14]. In the quantum Hall regime,
transport is described by the 1D edge states, located at the boundaries of the 2DEG where
bent Landau levels cross the Fermi levelEF , while in the edge states the Landau level
filling factor ν = 2πl2ne. Electrons can either move along the barrier or be transmitted
through the barrier. Corresponding to the integer filling factorν (Hall plateaus),σxx is
finite (as shown in figure 2(a)) and the barriers have a finite transmission. In this case, the
edge channel will ‘leak’ to the other side of the barrier and return to the same edge of the
sample [14]. Owing to the huge ratio of barrier length to barrier width (the typical value
is about 103), an electron is transmitted through the barrier long before it reaches the other
side of the 2DEG and there is no back scattering along the barrier. This is the reason why
the transport across the magnetic barrier occurs without dissipation.

The Weiss oscillations and the SdH oscillations are more pronounced in theB0 −
dRH/dB graph, as shown in figure 4(a) for the lowest order of Fourier transformation. For
T = 1 K, the SdH oscillations appear atB0 > 0.11 T. In figure 4(b), we give the same plots
for the modulation fieldB1(x) = B1{cos[(2π/a)x] + 1

2 cos[(4π/a)x]}. In this case, Weiss
oscillations have obvious multiple-frequency components atB0 > 0.17 T. In experiments,
dRH/dB can be determined from the measurement of the corresponding1ρxy .

Recently, experimental measurements on a 2DEG modulated by a 1D periodic
magnetic field have been reported by two groups for different modulation strengths with
a relatively larger modulation period (a ' 1 µm) [21, 22]. They observed the new
oscillations in the magnetoresistance, in addition to SdH oscillations, which correspond
to the commensurability between the semiclassical cyclotron diameter and the period
of magnetic modulation. Owing to the unavoidable presence of the weak electrostatic
potential modulation due to the differential contraction of the magnetic material (which is
responsible for the magnetic modulation) and the substrate, the SdH oscillations are not
obvious in the experimental results and can only be observed when the magnetic field
modulation dominates over the weak electric potential [21, 22]. The experimental results
are in qualitative agreement with our theory, while the quantitative comparison is very
difficult owing to the presence of potential modulation in the experiments and the different
modulation periods in experiments and our theory. The phenomenon of dissipationless
transport across the magnetic superlattice is not present in the experiments [21, 22] as given
in our theory above.

6. Conclusion

We have given a detailed investigation of the energy spectrum and the electric properties
of the 2DEG for a general form of the weak 1D periodic magnetic field in the one-
particle approximation to the order of(h̄ω1)

2, including higher-order components of Fourier
transformation, by generalizing the theory of Peeters and Vasilopoulos [15, 17] and that of
Xue and Xiao [16] on the magnetic modulation in the lowest order of approximation of
Fourier transformation. This modulation broadens the Landau levels into bands and leads to
band conduction along the direction perpendicular to the modulation, which is absent in the
uniform magnetic field, where only the quantum hopping of cyclotron motion exists. The
strength of the band conduction is proportional to the sum of the square of all the different
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Figure 4. (a) The derivative of Hall resistance versus the uniform magnetic fieldB0 for
T = 1 K (——) and for T = 6 K (· · · · · ·). (b) The same as (a) at T = 6 K for
B1(x) = B1{cos[(2π/a)x] + (R2/2) cos[(4π/a)x]} at T = 6 K in the case ofR2 = 0.0 (· · · · · ·)
andR2 = 1.0 (——).

components of Fourier transformation in modulation. The electric transport coefficients
σµν andρµν have Weiss oscillations due to the oscillatory band width at the Fermi energy
EF (resulting from the modulation) and SdH oscillations due to the oscillatory DOSs at
EF , similar to the case of a potential-modulated 2DEG.ρxx has a much larger oscillating
amplitude thanρyy , due to the existence of band conduction inρxx , which is much larger than
the scattering contribution in the high-mobility sample. The properties of Weiss oscillations
and SdH oscillations are more pronounced in dRH/dB as shown in figure 4. Owing to the
existence of the exponential factor exp(−p2u) in the energy spectrum, the contribution of
high-frequency components of modulation is visible only at high fields (B0 > 0.5 T). At
low fields, Weiss oscillations have only a single-frequency component, corresponding to the
modulation fieldB1(x) = B1 cos[(2π/a)x]. Therefore, the lowest-order approximation of
Fourier transformation may be a good approximation at low fields.

We note that for equal modulation strengths in potentialV0 [9, 17] and in a periodic
magnetic field ¯hω1, i.e. V0 = h̄ω1, the oscillation amplitude ofρµν in the magnetic case is
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much larger than that in the electric case. We also get the surprising result that, while the
Hall resistance displays quantized plateaux, electrons are transported across the magnetic
superlattice dissipationless.

The study of the electrical properties of the 2DEG modulated by a periodic magnetic
field is of great importance to study the nature of flux lines in type-II superconductors.
As suggested by Bendinget al [23], a 2DEG may be used as a detector of flux-lattice
properties. By extending the analysis in this paper to a 2D modulation of magnetic field
with square geometry or hexagonal geometry, we may give a more exact interpretation of
the experimental results of Kruithofet al [24] on the basis of the work in [25] for the case
B0 . Bc2, whereBc2 is the upper critical field of the type-II superconductor.
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